Error of the Newton-Cotes and Gauss-Legendre Quadrature Formulas

نویسندگان

  • By N. S. Kambo
  • N. S. KAMBO
چکیده

Abstract. It was shown by P. J. Davis that the Newton-Cotes quadrature formula is convergent if the integrand is an analytic function that is regular in a sufficiently large region of the complex plane containing the interval of integration. In the present paper, a bound on the error of the Newton-Cotes quadrature formula for analytic functions is derived. Also the bounds on the Legendre polynomial and the Legendre function of the second kind are obtained. These bounds are employed to derive a bound on the error of the Gauss-Legendre quadrature formula for analytic functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimates for Gauss Quadrature Formulas for Analytic Functions

1. Introduction. The estimation of quadrature errors for analytic functions has been considered by Davis and Rabinowitz [1]. An estimate for the error of the Gaussian quadrature formula for analytic functions was obtained by Davis [2]. McNamee [3] has also discussed the estimation of error of the Gauss-Legendre quadrature for analytic functions. Convergence of the Gaussian quadratures was discu...

متن کامل

Stieltjes Polynomials and the Error of Gauss-kronrod Quadrature Formulas

The Gauss-Kronrod quadrature scheme, which is based on the zeros of Legendre polynomials and Stieltjes polynomials, is the standard method for automatic numerical integration in mathematical software libraries. For a long time, very little was known about the error of the Gauss-Kronrod scheme. An essential progress was made only recently, based on new bounds and as-ymptotic properties for the S...

متن کامل

Quadrature formula for sampled functions

Abstract—This paper deals with efficient quadrature formulas involving functions that are observed only at fixed sampling points. The approach that we develop is derived from efficient continuous quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis quadrature. We select nodes at sampling positions that are as close as possible to those of the associated classical quadrature and we upd...

متن کامل

Interpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature

We derive in this paper the asymptotic estimates of the nodes and weights of the Gauss-Lobatto-Legendre-Birkhoff (GLLB) quadrature formula, and obtain optimal error estimates for the associated GLLB interpolation in Jacobi weighted Sobolev spaces. We also present a useroriented implementation of the pseudospectral methods based on the GLLB quadrature nodes for Neumann problems. This approach al...

متن کامل

Spectral Petrov-Galerkin Methods for the Second Kind Volterra Type Integro-Differential Equations

This work is to provide general spectral and pseudo-spectral Jacobi-PetrovGalerkin approaches for the second kind Volterra integro-differential equations. The Gauss-Legendre quadrature formula is used to approximate the integral operator and the inner product based on the Jacobi weight is implemented in the weak formulation in the numerical implementation. For some spectral and pseudo-spectral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010